
A Play on Regular Expressions
Functional Pearl

Sebastian Fischer Frank Huch Thomas Wilke
Christian-Albrechts University of Kiel, Germany
{sebf@,fhu@,wilke@ti.}informatik.uni-kiel.de

Abstract
Cody, Hazel, and Theo, two experienced Haskell programmers and
an expert in automata theory, develop an elegant Haskell program
for matching regular expressions: (i) the program is purely func-
tional; (ii) it is overloaded over arbitrary semirings, which not only
allows to solve the ordinary matching problem but also supports
other applications like computing leftmost longest matchings or the
number of matchings, all with a single algorithm; (iii) it is more
powerful than other matchers, as it can be used for parsing every
context-free language by taking advantage of laziness.

The developed program is based on an old technique to turn
regular expressions into finite automata which makes it efficient
both in terms of worst-case time and space bounds and actual
performance: despite its simplicity, the Haskell implementation can
compete with a recently published professional C++ program for
the same problem.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; F.1.1 [Computa-
tion by Abstract Devices]: Models of Computation (Automata)

General Terms Algorithms, Design

Keywords regular expressions, finite automata, Glushkov con-
struction, purely functional programming

CAST

CODY – proficient Haskell hacker
HAZEL – expert for programming abstractions
THEO – automata theory guru

ACT I

SCENE I. SPECIFICATION

To the right: a coffee machine and a whiteboard next to it.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’10, September 27–29, 2010, Baltimore, Maryland, USA.
Copyright © 2010 ACM 978-1-60558-794-3/10/09. . . $10.00

To the left: HAZEL sitting at her desk, two office chairs
nearby, a whiteboard next to the desk, a laptop, keyboard,
and mouse on the desk. HAZEL is looking at the screen, a
browser window shows the project page of a new regular
expression library by Google.
CODY enters the scene.

CODY What are you reading?
HAZEL Google just announced a new library for regular expression

matching which is—in the worst case—faster and uses less
memory than commonly used libraries.

CODY How would we go about programming regular expression
matching in Haskell?

HAZEL Well, let’s see. We’d probably start with the data type.
(Opens a new Haskell file in her text editor and enters the
following definition.)

data Reg = Eps -- ε
| Sym Char -- a
| Alt Reg Reg -- α|β
| Seq Reg Reg -- αβ
| Rep Reg -- α∗

THEO (a computer scientist, living and working three floors up,
strolls along the corridor, carrying his coffee mug, thinking
about a difficult proof, and searching for distraction.) What are
you doing, folks?

HAZEL We just started to implement regular expressions in Haskell.
Here is the first definition.

THEO (picks up a pen and goes to the whiteboard.) So how would
you write

((a|b)∗c(a|b)∗c)∗(a|b)∗ ,

which specifies that a string contains an even number of c’s?
CODY That’s easy. (Types on the keyboard.)

ghci> let nocs = Rep (Alt (Sym ’a’) (Sym ’b’))
ghci> let onec = Seq nocs (Sym ’c’)
ghci> let evencs = Seq (Rep (Seq onec onec)) nocs

THEO Ah. You can use abbreviations, that’s convenient. But why
do you have Sym in front of every Char?— That looks redun-
dant to me.

HAZEL Haskell is strongly typed, which means every value has
exactly one type! The arguments of the Alt constructor must
be of type Reg, not Char, so we need to wrap characters in
the Sym constructor.— But when I draw a regular expression,
I leave out Sym, just for simplicity. For instance, here is how
I would draw your expression. (Joins THEO at the whiteboard
and draws Figure 1.)

CODY How can we define the language accepted by an arbitrary
regular expression?

Seq

Rep

Alt

’b’’a’

Rep

Seq

Seq

’c’

Rep

Alt

’b’’a’

Seq

’c’

Rep

Alt

’b’’a’

Figure 1. The tree representation of the regular expression
((a|b)∗c(a|b)∗c)∗(a|b)∗ which matches all words in {a, b, c}∗
with an even number of occurrences of c

THEO As a predicate, inductively on the structure of your data
type. (Writes some formal definitions to the whiteboard: seman-
tic brackets, Greek letters, languages as sets, etc.)

HAZEL (goes to the keyboard, sits down next to CODY.) Ok, this
can be easily coded in Haskell, as a characteristic function. List
comprehensions are fairly useful, as well.
(Writes the following definition in her text editor.)

accept :: Reg→ String→ Bool
accept Eps u = null u
accept (Sym c) u = u =I [c]
accept (Alt p q) u = accept p u ∨ accept q u
accept (Seq p q) u =

or [accept p u1 ∧ accept q u2 | (u1, u2)← split u]
accept (Rep r) u =

or [and [accept r ui | ui ← ps] | ps← parts u]

THEO Let me see. split produces all decompositions of a string into
two factors, and parts stands for “partitions” and produces all
decompositions of a string into an arbitrary number of factors.

CODY Wait! We need to be careful to avoid empty factors when
defining parts. Otherwise there is an infinite number of possible
decompositions.

HAZEL Right. But split must also produce empty parts and can be
defined as follows. (Continues writing the Haskell program.)

split :: [a]→ [([a], [a])]
split [] = [([], [])]
split (c : cs) = ([], c : cs) : [(c : s1, s2) | (s1, s2)← split cs]

The function parts is a generalization of split to split words into
any number of factors (not just two) except for empty ones.

CODY That’s tricky. Let’s use list comprehensions again. (Sits
down on one of the empty chairs, grabs the keyboard and ex-
tends the program as follows:)

parts :: [a]→ [[[a]]]
parts [] = [[]]
parts [c] = [[[c]]]
parts (c : cs) =

concat [[(c : p) : ps, [c] : p : ps] | p : ps← parts cs]

We split a word with at least two characters recursively and
either add the first character to the first factor or add it as a new
factor.

THEO Why do you write [a] and not String.
HAZEL That’s because we want to be more general. We can now

work with arbitrary list types instead of strings only.

THEO That makes sense to me.
CODY Maybe, it’s good to have a separate name for these lists.

I think Hazel used the term words—that’s a good term. Let’s
stick to it.

THEO I want to check out your code. (Sits down as well. Now all
three build a small crowd in front of the monitor.)

ghci> parts "acc"
[["acc"],["a","cc"],["ac","c"],["a","c","c"]]
ghci> accept evencs "acc"
True

THEO Aha. (Pauses to think for a moment.) Wait a second! The
number of decompositions of a string of length n + 1 is 2n.
Blindly checking all of them is not efficient. When you convert
a regular expression into an equivalent finite-state automaton
and use this automaton for matching, then, for a fixed regular
expression, the run time of the matching algorithm is linear in
the length of the string.

HAZEL Well, the program is not meant to be efficient. It’s only
a specification, albeit executable. We can write an efficient
program later. What I am more interested in is whether we
can make the specification a bit more interesting first. Can it
be generalized, for instance?

THEO (staring out of the window.) We can add weights.
HAZEL Weights?

SCENE II. WEIGHTS

HAZEL, CODY, and THEO are still sitting around the
laptop.

HAZEL What do you mean by weights?
THEO Remember what we did above? Given a regular expression,

we assigned to a word a boolean value reflecting whether the
word matches the given expression or not. Now, we produce
more complex values—semiring elements.

HAZEL What’s an example? Is this useful at all?
THEO A very simple example is to determine the length of a word

or the number of occurrences of a given symbol in a word.
A more complicated example would be to count the number
of matchings of a word against a regular expression, or to
determine a leftmost longest matching subword.

CODY That sounds interesting, but what was a semiring, again?
HAZEL If I remember correctly from my algebra course a semiring

is an algebraic structure with zero, one, addition, and multipli-
cation that satisfies certain laws. (Adds a Haskell type class for
semirings to the Haskell file.)

class Semiring s where
zero, one :: s
(⊕), (⊗) :: s→ s→ s

Here, zero is an identity for ⊕, one for ⊗, both composition
operators are associative, and ⊕ is commutative, in addition.

THEO That’s true, but, moreover, the usual distributivity laws hold
and zero annihilates a semiring with respect to multiplications,
which means that both zero⊗ s and s⊗ zero are zero for all s.

HAZEL These laws are not enforced by Haskell, so program-
mers need to ensure that they hold when defining instances
of Semiring.

CODY Ok, fine. I guess what we need to do is to add weights to the
symbols in our regular expressions.

THEO (sipping coffee) Right.
CODY So let’s make a data type for weighted regular expressions.
THEO (interjects.) Cool, that’s exactly the terminology we use in

formal language theory.

CODY The only change to what we had before is in the symbol
case; we add the weights. We can also generalize from charac-
ters to arbitrary symbol types. (Writes the following code.)

data Regw c s = Epsw

| Symw (c→ s)
| Altw (Regw c s) (Regw c s)
| Seqw (Regw c s) (Regw c s)
| Repw (Regw c s)

HAZEL Aha! A standard implementation for the function attached
to some character would compare the character with a given
character and yield either zero or one:

sym :: Semiring s⇒ Char→ Regw Char s
sym c = Symw (λx→ if x =I c then one else zero)

Using sym, we can translate every regular expression into a
weighted regular expression in a canonical fashion:

weighted :: Semiring s⇒ Reg→ Regw Char s
weighted Eps = Epsw

weighted (Sym c) = sym c
weighted (Alt p q) = Altw (weighted p) (weighted q)
weighted (Seq p q) = Seqw (weighted p) (weighted q)
weighted (Rep p) = Repw (weighted p)

THEO How would you adjust accept to the weighted setting?
HAZEL I replace the Boolean operations with semiring operations.

(Goes on with entering code.)

acceptw :: Semiring s⇒ Regw c s→ [c]→ s
acceptw Epsw u = if null u then one else zero
acceptw (Symw f) u = case u of [c]→ f c; → zero
acceptw (Altw p q) u = acceptw p u⊕ acceptw q u
acceptw (Seqw p q) u =

sum [acceptw p u1 ⊗ acceptw q u2 | (u1, u2)← split u]
acceptw (Repw r) u =

sum [prod [acceptw r ui | ui ← ps] | ps← parts u]

THEO How do you define the functions sum and prod?
HAZEL They are generalizations of or and and, respectively:

sum, prod :: Semiring s⇒ [s]→ s
sum = foldr (⊕) zero
prod = foldr (⊗) one

And we can easily define a Semiring instance for Bool:

instance Semiring Bool where
zero = False
one = True
(⊕) = (∨)
(⊗) = (∧)

THEO I see. We can now claim for all regular expressions r and
words u the equation accept r u =I acceptw (weighted r) u.

CODY Ok, but we have seen matching before. Theo, can I see the
details for the examples you mentioned earlier?

THEO Let me check on your algebra. Do you know any semiring
other than the booleans?

CODY Well, I guess the integers form a semiring. (Adds a corre-
sponding instance to the file.)

instance Semiring Int where
zero = 0
one = 1
(⊕) = (+)
(⊗) = (∗)

THEO Right, but you could also restrict yourself to the non-
negative integers. They also form a semiring.

HAZEL Let’s try it out.

ghci> let as = Alt (Sym ’a’) (Rep (Sym ’a’))
ghci> acceptw (weighted as) "a" :: Int
2
ghci> let bs = Alt (Sym ’b’) (Rep (Sym ’b’))
ghci> acceptw (weighted (Seq as bs)) "ab" :: Int
4

It seems we can compute the number of different ways to match
a word against a regular expression. Cool! I wonder what else
we can compute by using tricky Semiring instances.

THEO I told you what you can do: count occurrences of symbols,
determine leftmost matchings, and so on. But let’s talk about
this in more detail later. There is one thing I should mention
now. You are not right when you say that with the above method
one can determine the number of different ways a word matches
a regular expression. Here is an example. (Uses again the inter-
active Haskell environment.)

ghci> acceptw (weighted (Rep Eps)) "" :: Int
1

CODY The number of matchings is infinite, but the program gives
us only one. Can’t we fix that?

THEO Sure, we can, but we would have to talk about closed semir-
ings. Let’s work with the simple solution, because working with
closed semirings is a bit more complicated, but doesn’t buy us
much.

HAZEL (smiling) The result may not reflect our intuition, but, due
to the way in which we defined parts, our specification does not
count empty matchings inside a repetition. It only counts one
empty matching for repeating the subexpression zero times.

ACT II

Same arrangement as before. The regular expression
tree previously drawn by CODY, see Figure 1, is still on
the whiteboard.
HAZEL and CODY standing at the coffee machine, not
saying anything. THEO enters the scene.

SCENE I. MATCHING

THEO Good morning everybody! How about looking into efficient
matching of regular expressions today?

HAZEL Ok. Can’t we use backtracking? What I mean is that we
read the given word from left to right, check at the same time
whether it matches the given expression, revising decisions
when we are not successful. I think this is what algorithms for
Perl style regular expressions typically do.

CODY But backtracking is not efficient—at least not always. There
are cases where backtracking takes exponential time.

HAZEL Can you give an example?
CODY If you match the word an against the regular expression

(a|ε)nan, then a backtracking algorithm takes exponential time
to find a matching.1

HAZEL You’re right. When trying to match an against (a|ε)nan

one can choose either a or ε in n positions, so all together
there are 2n different options, but only one of them—picking
ε every time—leads to a successful matching. A backtracking

1 By xn Cody means a sequence of n copies of x.

Seq

Rep

Alt

’b’’a’

Rep

Seq

Seq

’c’

Rep

Alt

’b’’a’

Seq

’c’

Rep

Alt

’b’’a’
(a) Result after reading b

Seq

Rep

Alt

’b’’a’

Rep

Seq

Seq

’c’

Rep

Alt

’b’’a’

Seq

’c’

Rep

Alt

’b’’a’
(b) Result after reading bc

Figure 2. Marking positions in the regular expression ((a|b)∗c(a|b)∗c)∗(a|b)∗ while matching

algorithm may pick this combination only after having tried all
the other options.— Can we do better?

THEO An alternative is to turn a regular expression into an equiva-
lent deterministic finite-state automaton. The run time for sim-
ulating an automaton on a given word is linear in the length of
the word, but the automaton can have exponential size in the
size of the given regular expression.

CODY That’s not good, because then the algorithm not only has
exponential space requirements but additionally preprocessing
takes exponential time.

HAZEL Can you give an example where the deterministic automa-
ton has necessarily exponential size?

THEO Suppose we are working with the alphabet that contains only
a and b. If you want to check whether a word contains two
occurrences of a with exactly n characters in between, then any
deterministic automaton for this will have 2n+1 different states.

CODY Why?
THEO Because at any time—while reading a word from left to

right—the automaton needs to know for each of the previous
n characters whether it was an a or not in order to tell whether
the entire word is accepted.

HAZEL I see. You need such detailed information because if there
was an a exactly n + 1 positions before the current position
and the next character is not an a, then you have to go to the
next state, where you will need to know whether there was an a
exactly n positions before the current position, and so on.

THEO Exactly!— And here is a formal proof. Suppose an automa-
ton had less than 2n+1 states. Then there would be two distinct
words of length n + 1, say u and v, which, when read by the
automaton, would lead to the same state. Since u and v are dis-
tinct, there is some position i such that u and v differ at position
i, say u carries symbol a in this position, but v doesn’t. Now,
consider the word w which starts with i copies of b, followed
by one occurrence of a (w = bia). On the one hand, uw has the
above property, namely two occurrences of a’s with n charac-
ters in between, but vw has not, on the other hand, the automa-
ton would get to the same state for both words, so either both
words are accepted, or none of them is—a contradiction.

CODY Interesting. And, indeed, a regular expression to solve this
task has size only linear in n. If we restrict ourselves to the
alphabet consisting of a and b, then we can write it as follows.
(Grabs a pen from his pocket and a business card from his
wallet. Scribbles on the back of the business card. Reads aloud
the following term.)

(a|b)∗a(a|b)na(a|b)∗

HAZEL Can we avoid constructing the automaton in advance?
CODY Instead of generating all states in advance, we can generate

the initial state and generate subsequent states on the fly. If we
discard previous states, then the space requirements are bound
by the space requirements of a single state.

THEO And the run time for matching a word of length n is in
O(mn) if it takes time O(m) to compute a new state from the
previous one.

HAZEL That sounds reasonably efficient. How can we implement
this idea?

THEO Glushkov proposed a nice idea for constructing non-deter-
ministic automata from regular expressions, which may come
in handy here. It avoids ε-transitions and can probably be im-
plemented in a structural fashion.

HAZEL (smiling) I think we would say it could be implemented in
a purely functional way.

CODY (getting excited) How are his automata constructed?
THEO A state of a Glushkov automaton is a position of the given

regular expression where a position is defined to be a place
where a symbol occurs. What we want to do is determinize this
automaton right away, so we should think of a state as a set of
positions.

HAZEL What would such a set mean?
THEO The positions contained in a state describe where one would

get to by trying to match a word in every possible way.
HAZEL I don’t understand. Can you give an example?
THEO Instead of writing sets of positions, I mark the symbols in

the regular expression with a box. This is more intuitive and
allows me to explain how a new set of positions is computed
from an old one.

CODY Let’s match the string bc against the regular expression
which checks whether it contains an even number of c’s.

THEO Well, I need to draw some pictures.
CODY Then let’s go back to Hazel’s office; we can probably use

what we wrote on the whiteboard yesterday.

The three move to the left side of the stage, get in front
of the whiteboard, where Figure 1 is still shown.

THEO Initially, no symbol is marked, i. e., the initial state is the
empty set. We then mark every occurrence of ’b’ in the regular
expression that might be responsible for reading the first char-

Seq

Rep

Alt

’b’’a’

Rep

Seq

Seq

’c’

Rep

Alt

’b’’a’

Seq

’c’

Rep

Alt

’b’’a’
(a) Result after reading bcc

Seq

Rep

Alt

’b’’a’

Rep

Seq

Seq

’c’

Rep

Alt

’b’’a’

Seq

’c’

Rep

Alt

’b’’a’
(b) Result after reading bccc

Figure 3. Shifting symbol marks in repetitions of the regular expression ((a|b)∗c(a|b)∗c)∗(a|b)∗

acter b of the word. (Draws two boxes around the first and last
’b’ in the regular expression tree, see Figure 2(a).)

HAZEL There are two possibilities to read the first character b,
which correspond to the two positions that you marked. The last
’b’ in the regular expression can be marked because it follows
a repetition which accepts the empty word. But the ’b’ in the
middle cannot be responsible for matching the first character
because it follows the first ’c’ which has not yet been matched.

THEO Exactly! If we now read the next character c we shift the
mark from the first ’b’ to the subsequent ’c’. (Does so, which
leads to Figure 2(b).)

CODY And the mark of the other ’b’ is discarded because there is
no possibility to shift it to a subsequent ’c’.

THEO Right, you got the idea.— We have reached a final state if
there is a mark on a final character.

CODY When is a character final?
THEO When no other character has to be read in order to match the

whole regular expression, i.e., if the remaining regular expres-
sion accepts the empty word.

HAZEL I think we can elegantly implement this idea in Haskell!
Instead of using sets of positions we can represent states as
regular expressions with marks on symbols—just as you did
on the whiteboard.
(They move to the desk, CODY sits down right in front of the
keyboard, HAZEL and THEO take the two other office chairs.)

CODY Ok, let’s change the data type. We first consider the simple
version without semirings. (Opens the file from the previous
scene, adds a data type for regular expressions with marked
symbols. They use this file for the rest of the scene.)

data REG = EPS
| SYM Bool Char
| ALT REG REG
| SEQ REG REG
| REP REG

HAZEL Let’s implement the shift function. We probably want it to
take a possibly marked regular expression and a character to be
read and to produce a possibly marked regular expression.

THEO That’s not enough. In the beginning, no position is marked.
So if we just shift, we’ll never mark a position. A similar
problem occurs for subterms. If, in the left subexpression of
a sequence, a final position is marked, we want this to be taken
into account in the right subexpression.

HAZEL We need a third parameter, m, which represents an addi-
tional mark that can be fed into the expression. So the argu-
ments of shift are the mark, a possibly marked regular expres-
sion, and the character to be read:

shift :: Bool→ REG→ Char→ REG

The result of shift is a new regular expression with marks.
CODY The rule for ε is easy, because ε doesn’t get a mark:

shift EPS = EPS

THEO And a symbol in the new expression is marked if, first,
some previous symbol was marked, indicated by m=I True, and,
second, the symbol equals the character to be read.

shift m (SYM x) c = SYM (m ∧ x =I c) x

HAZEL We treat both arguments of a choice of regular expressions
the same.

shift m (ALT p q) c = ALT (shift m p c) (shift m q c)

Sequences are trickier. The given mark is shifted to the first part,
but we also have to shift it to the second part if the first part
accepts the empty word. Additionally, if the first part contains
a final character we have to shift its mark into the second
part, too. Assuming helper functions empty and final which
check whether a regular expression accepts the empty word or
contains a final character, respectively, we can handle sequences
as follows:

shift m (SEQ p q) c =
SEQ (shift m p c)

(shift (m ∧ empty p ∨ final p) q c)

We haven’t talked about repetitions yet. How do we handle
them?

THEO Let’s go back to the example first. Assume we have al-
ready read the word bc but now want to read two additional
c’s. (Stands up, grabs a pen, and changes the tree on the white-
board; the result is shown in Figure 3(a).) After reading the first
c the mark is shifted from the first ’c’ in the regular expression
to the second ’c’ as usual because the repetition in between ac-
cepts the empty word. But when reading the second c, the mark
is shifted from the second ’c’ in the expression back to the
first one! (Modifies the drawing again, see Figure 3(b) for the
result.) Repetitions can be read multiple times and thus marks
have to be passed through them multiple times, too.

CODY So we can complete the definition of shift as follows:

shift m (REP r) c = REP (shift (m ∨ final r) r c)

We shift a mark into the inner expression if a previous character
was marked or a final character in the expression is marked.

HAZEL Ok, let’s define the helper functions empty and final. I
guess, this is pretty straightforward. (Types the definition of
empty in her text editor.)

empty :: REG→ Bool
empty EPS = True
empty (SYM) = False
empty (ALT p q) = empty p ∨ empty q
empty (SEQ p q) = empty p ∧ empty q
empty (REP r) = True

No surprises here. How about final? (Goes on typing.)

final :: REG→ Bool
final EPS = False
final (SYM b) = b
final (ALT p q) = final p ∨ final q
final (SEQ p q) = final p ∧ empty q ∨ final q
final (REP r) = final r

CODY (pointing to the screen) The case for sequences is wrong.
It looks similar to the definition in shift, but you mixed up the
variables p and q. (Takes the keyboard and wants to change the
definition.)

HAZEL No, stop! This is correct. final analyzes the regular expres-
sion in the other direction. A final character of the first part is
also a final character of the whole sequence if the second part
accepts the empty word. Of course, a final character in the sec-
ond part is always a final character of the whole sequence, as
well.

CODY Got it. Let’s wrap all this up into an efficient function match
for regular expression matching. (Continues typing.) The type
of match is the same as the type of accept—our previously
defined specification.

match :: REG→ String→ Bool

If the given word is empty, we can check whether the expression
matches the empty word using empty:

match r [] = empty r

If the given word is a nonempty word c : cs we mark all
symbols of the given expression which may be responsible for
matching the first character c by calling shift True r c. Then
we subsequently shift the other characters using shift False.

match r (c : cs) =
final (foldl (shift False) (shift True r c) cs)

THEO Why has the argument to be False?
CODY Because, after having processed the first character, we only

want to shift existing marks without adding new marks from the
left. Finally, we check whether the expression contains a final
character after processing the whole input word.

HAZEL That is a pretty concise implementation of regular expres-
sion matching! However, I’m not yet happy with the defini-
tion of shift and how it repeatedly calls the auxiliary functions
empty and final which traverse their argument in addition to the
traversal by shift. Look at the rule for sequences again! (Points
at the shift rule for sequences on the screen.)

shift m (SEQ p q) c =
SEQ (shift m p c)

(shift (m ∧ empty p ∨ final p) q c)

data REGw c s = REGw {emptyw :: s,
finalw :: s,
regw :: REw c s}

data REw c s = EPSw

| SYMw (c→ s)
| ALTw (REGw c s) (REGw c s)
| SEQw (REGw c s) (REGw c s)
| REPw (REGw c s)

epsw :: Semiring s⇒ REGw c s
epsw = REGw {emptyw = one,

finalw = zero,
regw = EPSw}

symw :: Semiring s⇒ (c→ s)→ REGw c s
symw f = REGw {emptyw = zero,

finalw = zero,
regw = SYMw f }

altw :: Semiring s⇒ REGw c s→ REGw c s→ REGw c s
altw p q = REGw {emptyw = emptyw p⊕ emptyw q,

finalw = finalw p⊕ finalw q,
regw = ALTw p q}

seqw :: Semiring s⇒ REGw c s→ REGw c s→ REGw c s
seqw p q =

REGw {emptyw = emptyw p⊗ emptyw q,
finalw = finalw p⊗ emptyw q⊕ finalw q,
regw = SEQw p q}

repw :: Semiring s⇒ REGw c s→ REGw c s
repw r = REGw { emptyw = one,

finalw = finalw r,
regw = REPw r}

matchw :: Semiring s⇒ REGw c s→ [c]→ s
matchw r [] = emptyw r
matchw r (c : cs) =

finalw (foldl (shiftw zero · regw) (shiftw one (regw r) c) cs)

shiftw :: Semiring s⇒ s→ REw c s→ c→ REGw c s
shiftw EPSw = epsw

shiftw m (SYMw f) c = (symw f) {finalw = m⊗ f c}
shiftw m (ALTw p q) c =

altw (shiftw m (regw p) c) (shiftw m (regw q) c)
shiftw m (SEQw p q) c =

seqw (shiftw m (regw p) c)
(shiftw (m⊗ emptyw p⊕ finalw p) (regw q) c)

shiftw m (REPw r) c =
repw (shiftw (m⊕ finalw r) (regw r) c)

Figure 4. Efficient matching of weighted regular expressions

There are three calls which traverse p and one of them is
a recursive call to shift. So, if p contains another sequence
where the left part contains another sequence where the left part
contains another sequence and so on, this may lead to quadratic
run time in the size of the regular expression. We should come
up with implementations of empty and final with constant run
time.

CODY We need to cache the results of empty and final in the
inner nodes of regular expressions such that we don’t need to
recompute them over and over again. Then the run time of shift
is linear in the size of the regular expression and the run time
of match is in O(mn) if m is the size of the regular expression
and n the length of the given word.

THEO That’s interesting. The run time is independent of the num-
ber of transitions in the corresponding Glushkov automaton.
The reason is that we use the structure of the regular expres-
sion to determine the next state and find it without considering
all possible transitions.

HAZEL And the memory requirements are in O(m), because we
discard old states while processing the input.

The three are excited. THEO sits down again to join
CODY and HAZEL for generalizing the implementation
previously developed: they use semirings again and im-
plement the idea of caching the results of empty and
final. The result is presented in Figure 4.

HAZEL First of all, we have to add fields to our regular expressions
in which we can store the cached values for empty and final.
This can be done elegantly by two alternating data types REGw

and REw.
THEO Okay, but what are the curly brackets good for.
CODY This is Haskell’s notation for specifying field labels. You

can read this definition as a usual data type definition with a
single constructor REGw taking three arguments. Furthermore,
Haskell automatically defines functions emptyw, finalw, and
regw to select the values of the corresponding fields.

THEO I understand. How can we go on then?
CODY We use smart constructors, which propagate the cached

values automatically. When shifting marks, which are now
weights, through the regular expression these smart construc-
tors will come in handy (epsw, symw, altw, seqw, and repw).

THEO And again the curly brackets are Haskell’s syntax for con-
structing records?

HAZEL Right. Finally, we have to modify match and shift such
that they use cached values and construct the resulting regular
expression by means of the smart constructors. The rule for
SYMw introduces a new final value and caches it as well.

THEO And here the curly brackets are used to update an existing
record in only one field.— Two more weeks of Haskell pro-
gramming with you guys, and I will be able to write beautiful
Haskell programs.

Disbelief on HAZEL’s and CODY’s faces.— They all
laugh.

SCENE II. HEAVY WEIGHTS

HAZEL, CODY, and THEO sitting relaxed on office
chairs, facing the audience, holding coffee mugs.

CODY I have a question. Until now we compute a weight for a
whole word according to a regular expression. Usually, one is
interested in matching a subword of a given word and finding
out information about the part that matches.

HAZEL Like the position or the length of the matching part.
CODY Can we use our approach to match only parts of a word and

compute information about the matching part?
THEO I think so. How about putting something like (a|b)∗ around

the given regular expression? This matches anything before and
after a part in the middle that matches the given expression.

HAZEL Yes, that should work. And we can probably zip the input
list with a list of numbers in order to compute information about
positions and lengths. Let’s see. (Scratches her head with one
hand and lays her chin into the other.)

After a few seconds, the three move with their office
chairs to the desk again, open the file from before in an
editor, and continue typing.

submatchw :: Semiring s⇒ REGw (Int, c) s→ [c]→ s
submatchw r s =

matchw (seqw arb (seqw r arb)) (zip [0 . .] s)
where arb = repw (symw (λ → one))

CODY I see! arb is a regular expression that matches an arbitrary
word and always yields the weight one. And r is a regular
expression where the symbols can access information about the
position of the matched symbol.

HAZEL Exactly!
THEO How can we create symbols that use the positional informa-

tion?
HAZEL For example, by using a subclass of Semiring with an

additional operation to compute an element from an index:

class Semiring s⇒ Semiringi s where
index :: Int→ s

CODY We can use it to define a variant of the sym function:

symi :: Semiringi s⇒ Char→ REGw (Int,Char) s
symi c = symw weight

where weight (pos, x) | x =I c = index pos
| otherwise = zero

THEO Ok, it yields zero if the character does not match, just like
before, but uses the index function to compute a weight from
the position of a character. And if we use symi we get regular
expressions of type Regw (Int,Char) s, which we can pass to
submatchw. Now, we need some instances of Semiringi that
use this machinery!

HAZEL How about computing the starting position for a nonempty
leftmost subword matching? We can use the following data
types:

data Leftmost = NoLeft | Leftmost Start
data Start = NoStart | Start Int

NoLeft is the zero of the semiring, i.e., it represents a failing
match. Leftmost NoStart is the one and, thus, used for ignored
characters:

instance Semiring Leftmost where
zero = NoLeft
one = Leftmost NoStart

CODY Let me try to define addition. NoLeft is the identity for ⊕.
So the only interesting case is when both arguments are con-
structed by Leftmost.

NoLeft ⊕ x = x
x ⊕ NoLeft = x
Leftmost x⊕ Leftmost y = Leftmost (leftmost x y)

where leftmost NoStart NoStart = NoStart
leftmost NoStart (Start i) = Start i
leftmost (Start i) NoStart = Start i
leftmost (Start i) (Start j) = Start (min i j)

The operation⊕ is called on the results of matching a choice of
two alternative regular expressions. Hence, the leftmost func-
tion picks the leftmost of two start positions by computing their
minimum. NoStart is an identity for leftmost.

HAZEL Multiplication combines different results from matching
the parts of a sequence of regular expressions. If one part fails,
then the whole sequence does, and if both match, then the start

position is the start position of the first part unless the first part
is ignored:

NoLeft ⊗ = NoLeft
⊗ NoLeft = NoLeft

Leftmost x⊗ Leftmost y = Leftmost (start x y)
where start NoStart s = s

start s = s

THEO We need to make Leftmost an instance of Semiringi. I guess
we just wrap the given position in the Start constructor.

instance Semiringi Leftmost where
index = Leftmost · Start

HAZEL Right. Now, executing submatchw in the Leftmost semir-
ing yields the start position of the leftmost match. We don’t
have to write a new algorithm but can use the one that we de-
fined earlier and from which we know it is efficient. Pretty cool.

THEO Let me see if our program works. (Starts GHCi.) I’ll try
to find substrings that match against the regular expression
a(a|b)∗a and check where they start.

ghci> let a = symi ’a’
ghci> let ab = repw (a ‘altw‘ symi ’b’)
ghci> let aaba = a ‘seqw‘ ab ‘seqw‘ a
ghci> submatchw aaba "ab" :: Leftmost
NoLeft
ghci> submatchw aaba "aa" :: Leftmost
Leftmost (Start 0)
ghci> submatchw aaba "bababa" :: Leftmost
Leftmost (Start 1)

Ok. Good. In the first example, there is no matching and we get
back NoLeft. In the second example, the whole string matches
and we get Leftmost (Start 0). In the last example, there
are three matching subwords—"ababa" starting at position 1,
"aba" starting at position 1, and "aba" starting at position 3—
and we get the leftmost start position.

CODY Can we extend this to compute also the length of leftmost
longest matches?

HAZEL Sure, we use a pair of positions for the start and the end of
the matched subword.

data LeftLong = NoLeftLong | LeftLong Range
data Range = NoRange | Range Int Int

The Semiring instance for LeftLong is very similar to the one
we defined for Leftmost. We have to change the definition of
addition, namely, where we select from two possible matchings.
In the new situation, we pick the longer leftmost match rather
than only considering the start position. If the start positions are
equal, we also compare the end positions:

First, they only sketch how to implement this.

...
LeftLong x⊕ LeftLong y = LeftLong (leftlong x y)

where leftlong ...
leftlong (Range i j) (Range k l)
| i< k ∨ i =I k ∧ j > l = Range i j
| otherwise = Range k l

CODY And when combining two matches sequentially, we pick the
start position of the first part and the end position of the second
part. Pretty straightforward!

...
LeftLong x⊗ LeftLong y = LeftLong (range x y)

where range ...
range (Range i) (Range j) = Range i j

THEO We also need to define the index function for the LeftLong
type:

instance Semiringi LeftLong where
index i = LeftLong (Range i i)

And again, we can use the same algorithm that we have used
before.

The light fades, the three keep typing, the only light
emerges from the screen. After a few seconds, the light
goes on again, the sketched Semiring instance is on the
screen.

HAZEL Let’s try the examples from before, but let’s now check for
leftmost longest matching.

ghci> submatchw aaba "ab" :: LeftLong
NoLeftLong
ghci> submatchw aaba "aa" :: LeftLong
LeftLong (Range 0 1)
ghci> submatchw aaba "bababa" :: LeftLong
LeftLong (Range 1 5)

The three lean back in their office chairs, sip their coffee,
and look satisfied.

SCENE III. EXPERIMENTS

CODY and HAZEL sit in front of the computer screen.
It’s dark by now, no daylight anymore.

CODY Before we call it a day, let’s check how fast our algorithm is.
We could compare it to the grep command and use the regular
expressions we have discussed so far. (Opens a new terminal
window and starts typing.)

bash> for i in ‘seq 1 10‘; do echo -n a; done | \
...> grep -cE "^(a?){10}a{10}$"
1

HAZEL What was that?
CODY That was a for loop printing ten a’s in sequence which

were piped to the grep command to print the number of lines
matching the regular expression (a|ε)10a10.

HAZEL Aha. Can we run some more examples?
CODY Sure. (Types in more commands.)

bash> for i in ‘seq 1 9‘; do echo -n a; done | \
...> grep -cE "^(a?){10}a{10}$"
0
bash> for i in ‘seq 1 20‘; do echo -n a; done | \
...> grep -cE "^(a?){10}a{10}$"
1
bash> for i in ‘seq 1 21‘; do echo -n a; done | \
...> grep -cE "^(a?){10}a{10}$"
0

HAZEL Ah. You were trying whether nine a’s are accepted—they
are not—and then checked 20 and 21 a’s.

CODY Yes, it seems to work correctly. Let’s try bigger numbers
and use the time command to check how long it takes.

bash> time for i in ‘seq 1 500‘;do echo -n a;done |\
...> grep -cE "^(a?){500}a{500}$"

CODY and HAZEL stare at the screen, waiting for the
call to finish. A couple of seconds later it does.

1

real 0m17.235s
user 0m17.094s
sys 0m0.059s

HAZEL That’s not too fast, is it? Let’s try our implementation.
(Switches to GHCi and starts typing.)

ghci> let a = symw (’a’==)
ghci> let seqn n = foldr1 seqw . replicate n
ghci> let re n = seqn n (altw a epsw) ‘seqw‘ seqn n a
ghci> :set +s
ghci> matchw (re 500) (replicate 500 ’a’)
True
(5.99 secs, 491976576 bytes)

CODY Good. We’re faster than grep and we didn’t even compile!
But it’s using a lot of memory. Let me see. (Writes a small
program to match the standard input stream against the above
expression and compiles it using GHC.) I’ll pass the -s option
to the run-time system so we can see both run time and memory
usage without using the time command.

bash> for i in ‘seq 1 500‘; do echo -n a; done | \
...> ./re500 +RTS -s
match
...
1 MB total memory in use

...
Total time 0.06s (0.21s elapsed)

...

Seems like we need a more serious competitor!
HAZEL I told you about Google’s new library. They implemented

an algorithm in C++ with similar worst case performance as our
algorithm. Do you know any C++?

CODY Gosh!
The light fades, the two keep typing, the only light
emerges from the screen. After a few seconds, the light
goes on again.

HAZEL Now it compiles!
CODY Puuh. This took forever—one hour.
HAZEL Let’s see whether it works.
CODY C++ isn’t Haskell.

They both smile.
HAZEL We wrote the program such that the whole string is

matched, so we don’t need to provide the start and end markers
^ and $.

bash> time for i in ‘seq 1 500‘;do echo -n a;done |\
...> ./re2 "(a?){500}a{500}"
match
real 0m0.092s
user 0m0.076s
sys 0m0.022s

Ah, that’s pretty fast, too. Let’s push it to the limit:

bash> time for i in ‘seq 1 5000‘;do echo -n a;done |\
...> ./re2 "(a?){5000}a{5000}"
Error ... invalid repetition size: {5000}

CODY Google doesn’t want us to check this example. But wait.
(Furrows his brow.) Let’s cheat:

bash> time for i in ‘seq 1 5000‘;do echo -n a;done |\
...> ./re2 "((a?){50}){100}(a{50}){100}"
match
real 0m4.919s
user 0m4.505s
sys 0m0.062s

HAZEL Nice trick! Let’s try our program. Unfortunately, we have
to recompile for n = 5000, because we cannot parse regular
expressions from strings yet.

They recompile their program and run it on 5000 a’s.

bash> for i in ‘seq 1 5000‘; do echo -n a; done |\
...> ./re5000 +RTS -s
match
...
3 MB total memory in use

...
Total time 20.80s (21.19s elapsed)
%GC time 83.4% (82.6% elapsed)

...

HAZEL The memory requirements are quite good but in total it’s
about five times slower than Google’s library in this example.

CODY Yes, but look at the GC line! More than 80% of the run time
is spent during garbage collection. That’s certainly because we
rebuild the marked regular expression in each step by shiftw.

HAZEL This seems inherent to our algorithm. It’s written as a
purely functional program and does not mutate one marked
regular expression but computes new ones in each step. Unless
we can somehow eliminate the data constructors of the regular
expression, I don’t see how we can improve on this.

CODY A new mark of a marked expression is computed in a tricky
way from multiple marks of the old expression. I don’t see
how to eliminate the expression structure which guides the
computation of the marks.

HAZEL Ok, how about trying another example? The Google li-
brary is based on simulating an automaton just like our algo-
rithm. Our second example, which checks whether there are
two a’s with a specific distance, is a tough nut to crack for
automata-based approaches, because the automaton is exponen-
tially large.

THEO curiously enters the scene.

CODY Ok, can we generate an input string such that almost all
states of this automaton are reached? Then, hopefully, caching
strategies will not be successful.

THEO If we just generate a random string of a’s and b’s, then
the probability that it matches quite early is fairly high. Note
that the probability that it matches after n + 2 positions is one
fourth. We need to generate a string that does not match at all
and is sufficiently random to generate an exponential number
of different states. If we want to avoid that there are two a’s
with n characters in between, we can generate a random string
and additionally keep track of the n + 1 previous characters.
Whenever we are exactly n+ 1 steps after an a, we generate a
b. Otherwise, we randomly generate either an a or a b. Maybe,
we should . . .

THEO’s voice fades out. Apparently, he immerses him-
self in some problem. CODY and HAZEL stare at him
for a few seconds, then turn to the laptop and write a
program genrnd which produces random strings of a’s
and b’s. They turn to THEO.

CODY Theo, we’re done!
THEO Ohhh, sorry! (Looks at the screen.)
CODY We can call genrnd with two parameters like this:

bash> ./genrnd 5 6
bbbaaaaabbbbbbbabaabbbbbbbaabbbbbbabbaabbb

The result is a string of a’s and b’s such that there are no two
a’s with 5 characters in between. The total number of generated
characters is the product of the incremented arguments, i.e., in
this case (5 + 1) ∗ (6 + 1) = 42.

THEO Ok. So if we want to check our regular expression for n =
20 we need to use a string with length greater than 220 ≈ 106.
Let’s generate around 2 million characters.

HAZEL Ok, let’s check out the Google program.

bash> time ./genrnd 20 100000 | ./re2 ".*a.{20}a.*"

While the program is running CODY is looking at a
process monitor and sees that Google’s program uses
around 5 MB of memory.

no match
real 0m4.430s
user 0m4.514s
sys 0m0.025s

Let’s see whether we can beat this. First, we need to compile a
corresponding program that uses our algorithm.

They write a Haskell program dist20 which matches
the standard input stream against the regular expression
.*a.{20}a.*. Then they run it.

bash> ./genrnd 20 100000 | ./dist20 +RTS -s
no match
...
2 MB total memory in use

...
Total time 3.10s (3.17s elapsed)
%GC time 5.8% (6.3% elapsed)

...

HAZEL Wow! This time we are faster than Google. And our pro-
gram uses only little memory.

CODY Yes, and in this example, the time for garbage collection is
only about 5%. I guess that’s because the regular expression is
much smaller now, so fewer constructors become garbage.

THEO This is quite pleasing. We have not invested any thoughts in
efficiency—at least w.r.t. constant factors—but, still, our small
Haskell program can compete with Google’s library.

HAZEL What other libraries are there for regular expression match-
ing? Obviously, we cannot use a library that performs back-
tracking, because it would run forever on our first benchmark.
Also, we cannot use a library that constructs a complete au-
tomaton in advance, because it would eat all our memory in the
second benchmark. What does the standard C library do?

CODY No idea.
Just as above, the light fades out, the screen being the
only source of light. CODY and HAZEL keep working,
THEO falls asleep on his chair. After a while, the sun
rises. CODY and HAZEL look tired, they wake up THEO.

CODY (addressing THEO) We wrote a program that uses the stan-
dard C library regex for regular expression matching and
checked it with the previous examples. It’s interesting, the per-
formance differs hugely on different computers. It seems that
different operating systems come with different implementa-
tions of the regex library. On this laptop—an Intel MacBook
running OS X 10.5—the regex library outperforms Google’s
library in the first benchmark and the Haskell program in the
second benchmark – both by a factor between two and three, but
not more. We tried it on some other systems, but the library was
slower there. Also, when not using the option RE2::Latin1 in
the re2 program it runs in UTF-8 mode and is more than three
times slower in the second benchmark.

THEO Aha.

ACT III

SCENE I. INFINITE REGULAR EXPRESSIONS

HAZEL sitting at her desk. THEO and CODY at the
coffee machine, eating a sandwich.

CODY The benchmarks are quite encouraging and I like how ele-
gant the implementation is.

THEO I like our work as well, although it is always difficult to work
with practitioners. (Rolls his eyes.) It is a pity that the approach
only works for regular languages.

CODY I think this is not true. Haskell is a lazy language. So I think
there is no reason why we should not be able to work with non-
regular languages.

THEO How is this possible? (Starts eating much faster.)
CODY Well, I think we could define an infinite regular expression

for a given context-free language. There is no reason why our
algorithm should evaluate unused parts of regular expressions.
Hence, context-free languages should work as well.

THEO That’s interesting. (Finishes his sandwich.) Let’s go to Hazel
and discuss it with her.

THEO jumps up and rushes to HAZEL. CODY is puzzled
and follows, eating while walking.

THEO (addressing HAZEL) Cody told me that it would also be
possible to match context-free languages with our Haskell pro-
gram. Is that possible?

HAZEL It might be. Let’s check how we could define a regular
expression for any number of a’s followed by the same number
of b’s ({anbn | n > 0}).

CODY Instead of using repetitions like in a∗b∗, we have to use
recursion to define an infinite regular expression. Let’s try.

ghci> let a = symw (’a’==)
ghci> let b = symw (’b’==)
ghci> let anbn = epsw ‘altw‘ seqw a (anbn ‘seqw‘ b)
ghci> matchw anbn ""

The program doesn’t terminate.

^C

THEO It doesn’t work. That’s what I thought!
HAZEL You shouldn’t be so pessimistic. Let’s find out why the

program evaluates the infinite regular expression.
CODY I think the problem is the computation of finalw. It traverses

the whole regular expression while searching for marks it can
propagate further on. Is this really necessary?

HAZEL You mean there are parts of the regular expression which
do not contain any marks. Traversing these parts is often super-
fluous because nothing is changed anyway, but our algorithm
currently evaluates the whole regular expression even if there
are no marks.

CODY We could add a flag at the root of each subexpression indi-
cating that the respective subexpression does not contain any
mark at all. This could also improve the performance in the
finite case, since subexpressions without marks can be shared
instead of copied by the shiftw function.

THEO I’d prefer to use the term weights when talking about the
semiring implementation. When you say marks you mean
weights that are non-zero.

CODY Right. Let me change the implementation.
CODY leaves.

SCENE II. LAZINESS

THEO and HAZEL still at the desk. CODY returns.
CODY (smiling) Hi guys, it works. I had to make some modifica-

tions in the code, but it’s still a slick program. You can check
out the new version now.

HAZEL What did you do?

CODY First of all, I added a boolean field active to the data type
REGw. This field should be False for a regular expression
without non-zero weights. If a weight is shifted into a sub-
expression the corresponding node is marked as active.

shiftw m (SYMw f) c =
let fin = m⊗ f c
in (symw f) {active = fin 6= zero, finalw = fin}

HAZEL So the new field is a flag that tells whether there are any
non-zero weights in a marked regular expression. We need an
extra flag because we cannot deduce this information from
the values of emptyw and finalw alone. An expression might
contain non-zero weights even if the value of finalw is zero.

CODY Right. The smart constructors propagate the flag as one
would expect. Here is the modified definition of seqw, the other
smart constructors need to be modified in a similar fashion:

seqw :: Semiring s⇒ REGw c s→ REGw c s→ REGw c s
seqw p q =

REGw {active = active p ∨ active q,
emptyw = emptyw p⊗ emptyw q,
finalw = finala p⊗ emptyw q⊕ finala q,
regw = SEQw p q}

HAZEL What is finala?
CODY It’s an alternative to finalw that takes the active flag into

account.

finala :: Semiring s⇒ REGw c s→ s
finala r = if active r then finalw r else zero

HAZEL How does this work?
CODY It blocks the recursive computation of finalw for inactive

regular expressions. This works because of lazy evaluation: if
the given expression is inactive, this means that it does not
contain any non-zero weights. Thus, we know that the result of
computing the value for finalw is zero. But instead of computing
this zero recursively by traversing the descendants, we just set
it to zero and ignore the descendants.

HAZEL This only works if the value of the active field can be
accessed without traversing the whole expression. This is why
we need special constructors for constructing an initial regular
expression with all weights set to zero.

CODY Yes, for example, a constructor function for sequences with-
out non-zero weights can be defined as follows:

seq p q = REGw {active = False,
emptyw = emptyw p⊗ emptyw q,
finalw = zero,
regw = SEQw p q}

The difference to seqw is in the definition of the active and
finalw fields, which are set to False and zero, respectively.

HAZEL Ok, I guess we also need new functions alt and rep for
initial regular expressions where all weights are zero.

CODY Right. The last change is to prevent the shiftw function from
traversing (and copying) inactive subexpressions. This can be
easily implemented by introducing a wrapper function in the
definition of shiftw:

shiftw :: (Eq s, Semiring s)⇒
s→ REGw c s→ c→ REGw c s

shiftw m r c | active r ∨ m 6= zero = stepw m (regw r) c
| otherwise = r

where stepw is the old definition of shiftw with recursive calls
to shiftw. The only change is the definition for the SYMw case,
as I showed you before. 2

THEO Ok, fine (tired of the practitioners’ conversation). How
about trying it out now?

CODY Ok, let’s try anbn with the new implementation. We only
have to use the variants of our smart constructors that create
inactive regular expressions.

ghci> let a = symw (’a’==)
ghci> let b = symw (’b’==)
ghci> let anbn = epsw ‘alt‘ seq a (anbn ‘seq‘ b)
ghci> matchw anbn ""
True
ghci> matchw anbn "ab"
True
ghci> matchw anbn "aabb"
True
ghci> matchw anbn "aabbb"
False

THEO Impressive. So, what is the class of languages that we can
match with this kind of infinite regular expressions?

HAZEL I guess it is possible to define an infinite regular expression
for every context-free language. We only have to avoid left
recursion.

CODY Right. Every recursive call has to be guarded by a symbol,
just as with parser combinators.

THEO I see. Then it is enough if the grammar is in Greibach normal
form, i. e., every right-hand side of a rule starts with a symbol.

CODY Exactly. But, in addition, regular operators are allowed as
well, just as in extended Backus-Naur form. You can use stars
and nested alternatives as well.

HAZEL Pretty cool. And I think we can recognize even more lan-
guages. Some context-sensitive languages should work as well.

THEO How should this be possible?
HAZEL By using the power of Haskell computations. It should be

possible to construct infinite regular expressions in which each
alternative is guarded by a symbol and remaining expressions
can be computed by arbitrary Haskell functions. Let’s try to
specify an infinite regular expression for the language anbncn

(more precisely, {anbncn | n > 0}), which—as we all know—
is not context-free.

THEO A first approach would be something like the following.
(Scribbles on the whiteboard.)

ε | abc | aabbcc | aaabbbccc | . . .
CODY Unfortunately, there are infinitely many alternatives. If we

generate them recursively, the recursive calls are not guarded by
a symbol. But we can use distributivity of choice and sequence.

HAZEL Ah! Finally, we are using an interesting semiring law:

ε | a(bc | a(bbcc | a(bbbccc | a(. . .))))
Now every infinite alternative of a choice is guarded by the sym-
bol a. Hence, our algorithm only traverses the corresponding
subexpression if the input contains another a.

CODY So, let’s see! We first define functions to generate a given
number of b’s and c’s. (Typing into GHCi again.)

ghci> let bs n = replicate n (symw (’b’==))
ghci> let cs n = replicate n (symw (’c’==))

Then we use them to build our expression. (Continues typing.)

2 These modifications not only allow infinite regular expressions, they also
affect the performance of the benchmarks discussed in Act II. The first
benchmark runs in about 60% of the original run time. The run time of the
second is roughly 20% worse. Memory usage does not change siginificantly.

ghci> let bcs n = foldr1 seq (bs n ++ cs n)
ghci> let a = symw (’a’==)
ghci> let abc n = a ‘seq‘ alt (bcs n) (abc (n+1))
ghci> let anbncn = epsw ‘alt‘ abc 1

THEO Fairly complicated! Can you check it?
CODY enters some examples.

ghci> matchw anbncn ""
True
ghci> matchw anbncn "abc"
True
ghci> matchw anbncn "aabbcc"
True
ghci> matchw anbncn "aabbbcc"
False

THEO Great, it works. Impressive!

SCENE III. REVIEW

The three at the coffee machine.
HAZEL Good that you told us about Glushkov’s construction.
THEO We’ve worked for quite a long time on the regular expres-

sion problem now, but did we get somewhere?
HAZEL Well, we have a cute program, elegant, efficient, concise,

solving a relevant problem. What else do you want?
CODY What are we gonna do with it? Is it something people might

be interested in?
THEO I find it interesting, but that doesn’t count. Why don’t we ask

external reviewers? Isn’t there a conference deadline coming up
for nice programs (smiling)?

CODY and HAZEL (together) ICFP.
THEO ICFP?
CODY Yes, they collect functional pearls—elegant, instructive, and

fun essays on functional programming.
THEO But how do we make our story a fun essay?

The three turn to the audience, bright smiles on their
faces!

EPILOGUE

Regular expressions were introduced by Stephen C. Kleene in
his 1956 paper [Kleene 1956], where he was interested in charac-
terizing the behavior of McCulloch-Pitts nerve (neural) nets and
finite automata, see also the seminal paper [Rabin and Scott 1959]
by Michael O. Rabin and Dana Scott. Victor M. Glushkov’s paper
from 1960, [Glushkov 1960], is another early paper where regu-
lar expressions are translated into finite-state automata, but there
are many more, such as the paper by Robert McNaughton and H.
Yamada, [McNaughton and Yamada 1960]. Ken Thompson’s pa-
per from 1968 is the first to describe regular expression matching
[Thompson 1968].

The idea of introducing weights into finite automata goes back
to a paper by Marcel P. Schützenberger, [Schützenberger 1961];
weighted regular expressions came up later. A good reference
for the weighted setting is the Handbook of Weighted Automata
[Droste et al. 2009]; one of the papers that is concerned with
several weighted automata constructions is [Allauzen and Mohri
2006]. The paper [Caron and Flouret 2003] is one of the papers
that focuses on Glushkov’s construction in the weighted setting.

What we nowadays call Greibach normal form is defined in
Sheila A. Greibach’s 1965 paper [Greibach 1965].

Haskell is a lazy, purely functional programming language. A
historical overview is presented in [Hudak et al. 2007]. There are

several implementations of regular expressions in Haskell [Haskell
Wiki]. Some of these are bindings to existing C libraries, others are
implementations of common algorithms in Haskell. In comparison
with these implementations our approach is much more concise
and elegant, but can still compete with regard to efficiency. The
experiments were carried out using GHC version 6.10.4 with -O2
optimizations.

The Google library can be found at http://code.google.com/
p/re2/, the accompanying blog post at http://google-opensource.
blogspot.com/2010/03/re2-principled-approach-to-regular.
html.

REFERENCES

C. Allauzen and M. Mohri. A unified construction of the Glushkov, follow,
and Antimirov automata. In R. Kralovic and P. Urzyczyn, editors,
Mathematical Foundations of Computer Science 2006 (MFCS 2006),
Stará Lesná, Slovakia, volume 4162 of Lecture Notes in Computer
Science, pages 110–121. Springer, 2006.

P. Caron and M. Flouret. From Glushkov WFAs to rational expressions.
In Z. Ésik and Z. Fülöp, editors, Developments in Language Theory, 7th
International Conference (DLT 2003), Szeged, Hungary, volume 2710
of Lecture Notes in Computer Science, pages 183–193. Springer, 2003.

M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata.
Springer, New York, 2009.

V. M. Glushkov. On a synthesis algorithm for abstract automata. Ukr.
Matem. Zhurnal, 12(2):147–156, 1960.

S. A. Greibach. A new normal-form theorem for context-free phrase
structure grammars. J. ACM, 12(1):42–52, 1965.

Haskell Wiki. Haskell – regular expressions. http://www.haskell.org/
haskellwiki/Regular_expressions.

P. Hudak, J. Hughes, S. L. Peyton-Jones, and P. Wadler. A history of
Haskell: being lazy with class. In Third ACM SIGPLAN History of Pro-
gramming Languages Conference (HOPL-III), San Diego, California,
pages 1–55. ACM, 2007.

S. Kleene. Representation of events in nerve nets and finite automata. In
C. Shannon and J. McCarthy, editors, Automata Studies, pages 3–42.
Princeton University Press, Princeton, N.J., 1956.

R. McNaughton and H. Yamada. Regular expressions and state graphs
for automata. IEEE Transactions on Electronic Computers, 9(1):39–47,
1960.

M. O. Rabin and D. Scott. Finite automata and their decision problems.
IBM journal of research and development, 3(2):114–125, 1959.

M. P. Schützenberger. On the definition of a family of automata. Informa-
tion and Control, 4(2–3):245–270, 1961.

K. Thompson. Programming techniques: Regular expression search algo-
rithm. Commun. ACM, 11(6):419–422, 1968.

http://code.google.com/p/re2/
http://code.google.com/p/re2/
http://google-opensource.blogspot.com/2010/03/re2-principled-approach-to-regular.html
http://google-opensource.blogspot.com/2010/03/re2-principled-approach-to-regular.html
http://google-opensource.blogspot.com/2010/03/re2-principled-approach-to-regular.html
http://www.haskell.org/haskellwiki/Regular_expressions
http://www.haskell.org/haskellwiki/Regular_expressions

	Cast
	Act i
	Scene i Specification
	Scene ii Weights

	Act ii
	Scene i Matching
	Scene ii Heavy weights
	Scene iii Experiments

	Act iii
	Scene i Infinite regular expressions
	Scene ii Laziness
	Scene iii Review

	Act iv Epilogue

